POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Materials engineering

Course

Field of study Year/Semester

Electrical Engineering 1/2

Area of study (specialization) Profile of study

- general academic
Level of study Course offered in

First-cycle studies Polisch

Form of study Requirements full-time compulsory

Number of hours

Lecture Laboratory classes Other (e.g. online)

0 15 0

Tutorials Projects/seminars

0 0

Number of credit points

1

Lecturers

Responsible for the course/lecturer: Responsible for the course/lecturer:

Dr inż. Andrzej Graczkowski

email: andrzej.graczkowski@put.poznan.pl

tel. 61 665 2018

Faculty of Environmental Engineering and

Energy

Piotrowo 3a, 60-965 Poznań

Prerequisites

Mathematics, chemistry and physics fundamentals. Students can assemble the measurement system, can perform measurements of basic physical quantities. Is able to develop test results and work in a group. Understands the importance of teamwork

Course objective

Knowledge of basic materials used in electrical engineering, phenomena occurring in them and characterized them properties. Learning new techniques and research methods.

Course-related learning outcomes

Knowledge

1. The student has structured and theoretically founded knowledge of the structure and operation of electrical equipment, is knowledgeable about the exploitation of technical systems

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

- 2. The student has a basic knowledge of the properties and applications of materials used in electrical engineering
- 3. The student has knowledge of the physical phenomena occurring in insulating, conductive, semi-conductive and magnetic materials

Skills

- 1. Students can compile the research documentation and discuss obtained research results
- 2. The student can choose the right method and use the measuring equipment to determine the basic characteristics specific to tested materials

Social competences

- 1. The student understands the aspects and consequences of the use of materials, including the impact on the environment, and the related responsibility for decisions
- 2. The student is aware of their own responsibility for their work and a willingness to comply with the principles of teamwork and shared responsibility for the implementation of tasks

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Laboratory classes:

- continuous assessment, during each class rewarding the increase in the ability to use known principles and methods,
- assessment of knowledge and skills related to the implementation of the exercise task, evaluation of the report of the exercise.

Programme content

Laboratory classes:

experimental tests of quantities describing the characteristics of materials (testing of hardness, impact strength, permittivity, permeability, resistivity, hydrophobicity, electrical strength), testing of current-voltage characteristics of semi-conductive materials.

Teaching methods

Laboratory classes:

laboratory exercises carried out in teams of several, assembling of measuring systems in practice, measurements and analysis of the results obtained carried out with the teacher

Bibliography

Basic

- 1. Celiński Z., Materiałoznawstwo elektrotechniczne, Wydawnictwo Politechniki Warszawskiej,1998
- 2. Florkowska B., Furgał J., Szczerbiński M., Włodek R., Zydroń P., Materiały Elektrotechniczne, Podstawy teoretyczne i zastosowania, Wyd. AGH, Kraków 2010
- 3. Kolbiński K., Słowikowski J., Materiałoznawstwo Elektrotechniczne, WNT, Warszawa, 1988

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

4. Gielniak J. - red. Ćwiczenia laboratoryjne z inżynierii materiałowej w elektrotechnice, Wydawnictwo Politechniki Poznańskiej, Poznań 2009

Additional

- 1. Mościcka-Grzesiak H., Inżynieria wysokich napięć w elektroenergetyce, Wydawnictwo Politechniki Poznańskiej, tom I, 1996
- 2. Mościcka-Grzesiak H., Inżynieria wysokich napięć w elektroenergetyce, Wydawnictwo Politechniki Poznańskiej, tom II, 1999
- 3. Flisowski Z., Technika wysokich napięć, WNT W-wa, 2005
- 4. Gielniak J., Przybyłek P., Mościcka-Grzesiak H., Wytrzymałość elektryczna nanomodyfikowanych dielektryków ciekłych, Przegląd Elektrotechniczny, ISSN 0033-2097, R. 91 NR 2/2015
- 5. Gielniak J., Dombek G., Wróblewski R., Fire Safety and Electrical Properties of Mineral Oil/Synthetic Ester Mixtures, 8th International Symposium on Electrical Insulating Materials, September 12-15, 2017, Toyohashi Chamber of Commerce & Industry, Toyohashi City, Japan, Conference Proceedings of ISEIM 2017, V1-10, p. 227-230

Breakdown of average student's workload

	Hours	ECTS
Total workload	35	1,0
Classes requiring direct contact with the teacher	18	1,0
Student's own work (literature studies, preparation for laboratory	17	1,0
classes, preparation of laboratory exercise reports) ¹		

_

¹ delete or add other activities as appropriate